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A Probabilistic Factorization Algorithm with 
Quadratic Forms of Negative Discriminant 

By Martin Seysen 

Abstract. We propose a probabilistic algorithm for factorization of an integer N with run time 

(expVlog N log log N)V54 +?(1). Asymptotically, our algorithm will be as fast as the well- 
known factorization algorithm of Morrison and Brillhart. The latter algorithm will fail in 
several cases and heuristic assumptions are needed for its run time analysis. Our new 
algorithm will be analyzed under the assumption of the Extended Riemann Hypothesis and it 
will be of Las Vegas type. On input N, the new algorithm will factor N with probability > 12 
In case of prime N the algorithm will prove the primality of N with probability > 2 

Introduction. Until the last decade, the centuries-old problem of factoring integers 
was mainly a problem for specialists. Worldwide interest in factoring integers 
increased dramatically in 1978, when Rivest, Shamir, and Adleman [32] published 
their public key cryptosystem, whose security relies on the fact that some large 
integers are hard to factor. 

Gauss [9] already discovered a close connection between the factorization of a 
natural number N and the theory of quadratic forms of discriminant - 4N. Now, 
quadratic forms are one of the most important tools for factoring integers. Examples 
for efficient factorization algorithms are (among others) the algorithms of Morrison 
and Brillhart [26] and Lenstra and Schnorr [22]. The former works with the 
continued fraction expansion of FN (which is closely related to the theory of 
quadratic forms of discriminant 4N, see [20]) while the latter works with quadratic 
forms of discriminant - 4N. At present, the most efficient factorization algorithm is 
the quadratic sieve algorithm, see [29], which can also be expressed in terms of 
quadratic forms. For an overview of modem factorization algorithms we refer to the 
papers of Guy [10], Monier [25], and Pomerance [29]. 

A deeper understanding of the theory of quadratic forms is of great importance 
for the analysis of modem factorization algorithms. In this paper we shall only 
deal with the theory of quadratic forms of negative discriminant, which is 
considerably more simple than the theory of forms of positive discriminants. 
Using this theory, we obtain a probabilistic factorization algorithm with run time 
(exp Vlog N log log N )V4 (in this paper we denote by log X the natural logarithm 
of X). We have 5/4 1.118. 
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Pomerance [29] obtains the same run time for a variant of the factorization 
algorithm of Morrison and Brillhart. While Pomerance uses heuristic assumptions 
for his proofs, our probabilistic algorithm will be analyzed solely under the assump- 
tion of the Extended Riemann Hypothesis (ERH). Our new algorithm will be of Las 
Vegas type: On input N, it will give the complete factorization of N with probability 
> 2. In case of prime N it will prove the primality of N (provided that ERH is 
true). Note that all previously known factorization algorithms of comparable run 
time never yield a proof of primality. 

We need the Extended Riemann Hypothesis to get an effective version of the 
Chebotarev density theorem, see [14], [15] for details. There are also unconditional 
effective versions of the Chebotarev density theorem, see [14], [15], but they are not 
sufficiently sharp for our purposes. 

At present, the asymptotically fastest probabilistic factorization algorithm is 
the algorithm of Dixon [8]. A variant of that algorithm has run time 
(exp VlogN - loglogN) 5/2 +o(1). (We have 5/2 ~ 1.581.) 

Our new algorithm is not designed for implementation; its purpose is to give a 
deeper understanding of the run time behavior of the algorithms similar to the 
Morrison-Brillhart algorithm. 

I am greatly indebted to Professor Dr. C. P. Schnorr for valuable hints and critical 
discussions of the subject. 

1. The Idea Behind the New Factorization Algorithm. Gauss [9] introduced a 
binary operation "composition" on the set QFA of binary integral quadratic forms of 
discriminant A. This composition gives the set CA of SL2(Z)-equivalence classes of 
QF, the structure of a finite Abelian group called the class group. The cardinality hA 

of this group is called the class number. In case A < 0 we can effectively determine a 
representative of each class in CA. This allows us to do computations in the class 
group. Furthermore, Gauss [9] established a correspondence between the ambiguous 
classes (i.e., classes which are square roots of the unit class) and the disjoint 
factorizations of the discriminant. 

Shanks [38] developed methods for computing the class group and used ambigu- 
ous forms for factoring the discriminant. Under the assumption of the ERH these 
ideas yield a factorization algorithm with run time O(N175), cf. Schoof [36]. 

In the sequel, let 
(1.1) L(x):= exp logx. loglogx 
for all x E R, x > e. Schnorr [34] introduced a probabilistic factorization algorithm 
using the class group CA, A = - N (or A = - 3N). In order to compute CA, he 
introduced a system of prime classes IpA ̂... 

Ipn 
A E CA (with n = L(N)lI4+?(')) 

generating the class group. He used a probabilistic algorithm to obtain relations 
between these generators and he constructed ambiguous forms by combining these 
relations. He proved an upper bound of L(N)?+o(1) for the run time of his 
algorithm, using heuristic assumptions. By the methods of Pomerance [29] this upper 
bound can be improved to L(N)V5?4(1). 

Under the assumption of the ERH, Schoof [36] proved that the first O(log21Al) 
prime classes Ip, will already generate the whole class group CA. 

In order to compute CA, we construct a generating system (Ip1A ... .' Ipn,A) of CA 

with n = O(max[log2IAI, L(lAl)l/]). Based on the ideas of Schnorr [34l we will 
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construct n linearly independent relations between these generators of CA by means 
of a probabilistic algorithm. Then CA is a homomorphic image of the free Abelian 
group generated by the n prime forms Ip i = 1, . . ., n. In the sequel, the latter 
group will be identified with the additive group of the lattice Zn. Then the kernel of 
the above homomorphism is a sublattice r of Zn. Obviously, the index of r in Z n iS 

the class number hA. Consider the lattice A generated by the vectors of Zn 

corresponding to the n linearly independent relations computed above. A is a 
sublattice of r with finite index in F. Hence the index H of A in Z n is a multiple of 
the class number hA. The index H is the determinant of the coefficients of the n 
relations in CA. 

Once a multiple H of the class number is found, we can easily obtain a generating 
system of the 2-Sylow group S2A, of the class group simply by raising each generator 
of C,A to the Hth power, where H is the odd part of H. Using the methods of 
Lenstra and Schnorr [22], we will obtain the complete factorization of A from any 
generating system of S2 ,. 

In order to analyze the algorithm, which generates relations in the class group, we 
need some elementary lattice theory and some information about the distribution 
of prime forms, which at present is only available under the assumption of the 
ERH. Altogether, we obtain a probabilistic factorization algorithm with run time 
L(N)V2 +o(1). Using some more sophisticated techniques, as discussed in Sections 7 
and 8, we can improve the run time to L(N)V7?+(1). 

2. Quadratic Forms with Negative Discriminant. Let N be an odd natural number. 
We want to find the complete factorization of N. Without loss of generality, we 
assume N = -1 mod 4. (Otherwise, we factor 3N instead of N.) Let QF N be the 
set of positive binary integer primitive quadratic forms aX2 + bXY + CY2, a, b, c E 

Z, gcd(a, b, c) = 1, a > 0, with discriminant -N = b2 - 4ac. [Notation (a, b, c) or 
(a, b), c = (b2 + N)/(4a).] Note that QFN is nonempty if and only if -N = 0 or 
1 mod 4. 

In this paper we only deal with negative discriminants. For the more complicated 
theory of quadratic forms with positive discriminant we refer to [2] and [21]. 

Two forms (a, b, c) and (a', b', c') are called equivalent if and only if there is a 
2 x 2-matrix A E SL2(Z) with determinant 1 such that 

Y1b/2 c AI/b/2 c j 

\aIf b'/2 a b/2 
For f E QFJ N let [f] be its SL2(Z)-equivalence class and let C_N be the set of 
equivalence classes in QF-N. C_N is a finite Abelian group with respect to an 
operation called "composition" defined as follows (see [21]): 

[(a, bl, cl)] [(a2, b2, c2)] = [(a3, b3, c3)] with 

a3 = ala2/d 2; b3 = b2 + 2 
a 2 R; c3 = 34 with d, R such that: 

(2.1) dbgc(aa b2) b1 ? b2 XMvZ 
d = bgcdal,a2, 2a2 + tial + v 2 ; v E Z; 

R X b, - b2 
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The group C_N is called the class group, its cardinality h-N is called the class 
number of the discriminant -N. The class number can be bounded by the following 
old theorem of Schur [37] (see also [21]). 

THEOREM 2.2. For any discriminant - N with N > 4 one has 

h-N <-*( lg N 
+ loglogN + 1) < 

I 
A N logN. 

A form (a, b, c) is called reduced if 

IbI < a < c and (b > 0or IbI < a < c). 

Gauss [9] already proved 

THEOREM 2.3. Each class [f ] in C_N contains exactly one reducedform. 

In the sequel we identify C_N with the set of reduced forms in QF-N. The 
following algorithm gives the reduced form in the class of (a, b,c) in at most 
O(max{1, log a/N }) steps (see [13] or [35]): 

While (a, b, c) is not reduced do 
begin choose X E Z such that -a < b + 2 Xa < a; 

(a,b,c):= (c + Xb + X2a, -b - 2Xa,a) 
end. 

The composition formula (2.1), Theorem 2.3 and the above reduction algorithm yield 
an effective composition algorithm for reduced forms. 

A reduced form f E QF-N is called ambiguous if [f ]2 = IC-N. 

THEOREM 2.4. For each negative discriminant -N with -N = 1 mod 4 there is a 
bijective correspondence between the set of ambiguous forms in QF-N and the set 
{(p,q) e Z2: n = p q, gcd(p,q) = 1, p < q} of factorizations of N into two 
coprime factors. 

For a proof of Theorem 2.4 see [9] or [24]. For a complete enumeration of 
ambiguous forms of negative discriminant see [22]. The correspondence in Theorem 
2.4 can be pictured as follows: 

Np=p qqp)p 4 if 3p<qq, 

N=pq 
- 

p4 
q p 

q 
p 

)q if p < q < 3p. 

Thus the construction of all ambiguous forms of discriminant -N gives us the 
complete factorization of N. Note that the number of ambiguous forms may be quite 
large when N has many different very small prime factors. On the other hand, the 
very small prime factors of N can easily be found by trial division. For simplicity, we 
make the following assumptions. 

Throughout the paper we let 

L = L(N) = exp( logN loglogN), 

and we assume that N has no factors less than L (apart from possibly one single 
factor 3). Then the reader will easily verify that there are at most Lo(1) ambiguous 
forms in QF_ N' 
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Remark. In the sequel we shall use several procedures that help us to construct 
ambiguous forms. They will have run time LC?o(l), which is not polynomial in the 
binary length of N if c is any positive real number. Since we shall not bother about 
the o(l)-part in our run time analysis, we may use any reasonable machine model. 
For example, we may count the number of bit-operations on a Turing machine or we 
may count the number of arithmetic operations of numbers of size O(N). 

3. Outline of the New Factorization Algorithm. For any discriminant lA and prime 
p let (^) be the Kronecker symbol (see [16]), 

1 if A\ is a quadratic residue mod 4p and gcd( A\, p) = 1, 
(P) O0 if gcd(zA,p) 1, 

-1 otherwise. 
Let N be fixed as in Section 2. For any prime p with ( I") = 1 let the prime form Ip 
bedefinedbyIP:= [(p,bp)],wherebp:= min{b E N: b2 - -Nmod4p}. 

The following theorem is a simple consequence of the composition formula (2.1) 
and the definition of the Kronecker symbol (compare [34, fact 8 and Lemma 4]). 

THEOREM 3.1. Let (a, b) E QFN and let a = FHn7I pe, e, E N, pi prime, be the 
prime factorization of a. Then 

(1) (pN)=1, b= +bp mod2pi for allpi,,i=1,...,n (withbp as above); 
(2) [(a, b)] = H71(Ip) + e, where the plus sign in the exponent e, holds if and only 

if b = bp mod 2pi. 

Every form (a, b) E QF-N with gcd(a, N) = 1 can easily be factored into prime 
forms by Theorem 3.1, provided that the prime factorization of a is known. 

Let the prime form base Pl, / e N, be defined as follows: 

(3.2) P,:= {IP CN:Pprime,pl, (-N)=1}. 

If we assume the Extended Riemann Hypothesis (ERH) to be valid, the following 
theorem gives us a finite generating system of C_N. 

THEOREM 3.3 (ERH). There is an absolute, effectively computable constant cl such 
that PC1. log2 N generates C-N- 

Proof. See Schoof [36, Corollary 6.3]. 
Remark. Using the results of [27], one can show that Theorem 3.3 holds for 

cl = 280. Using the results of [1], cl can be improved to 2. 
We choose a fixed prime form base P, generating C_ N. Let n be the cardinality of 

P, and let P1, ..., Pn be the primes < 1 with ( - N/p) = 1 in natural order. 
Remark concerning the size of the prime form base. For factoring N we shall use a 

prime form base P, with 1 = L(N)z, where z is a fixed positive number. z will be 
optimized subject to certain conditions. Since L(N) grows faster than any poly- 
nomial of logN, the prime form base P, generates the whole class group for 
sufficiently large N by Theorem 3.3. Hence, for asymptotic considerations we may 
always assume that P, generates C_N. 

Let T: Zn n* C N be the homomorphism defined by 
n 

Tp(XI, * * Xn) = 1l (I) X; (XI . * , Xn) E Z 
j=1 

P 
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T is surjective since P, generates C_N. An additive subgroup of Zn will be called a 
lattice (in Zn). For example, ker T is a lattice. 

For any integer k x n matrix A = (aij), let A(A) be the lattice generated by the 
row vectors of A: 

A(A):= a1Z + +amZ with ai = (ail,...,ain); i = ...,k. 

A matrix A with A(A) c kerT will be called a form matrix. Any form matrix (aij) 
satisfies 

n 

H(Ip )aJ = 1 i = l, .1.. I . 

The determinant of any form matrix A is a multiple of the class number h -N since 
C_N is a factor group of Z n/A(A). 

In Section 4 we will prove under the assumption of the Extended Riemann 
Hypothesis: 

THEOREM 3.4 (ERH). There is a probabilistic algorithm with run time LV ?+ o(1) 

which on input N computes a nonsingular form matrix A for the prime form base Pl, 
L1 48 with probability > 2. A has coefficients of size O(N). 

Let A be a matrix as in Theorem 3.4. Using Hadamard's inequality (see [12]), we 
can easily obtain an upper bound of exp[O(n log N)] for the determinant det A. 
(Here n = #P- = o(Ll/Vr).) Thus log det A can be bounded by Ll/8+ ?o(1). 

We compute det A modulo Li/F + (l) different primes qi of size O(N). Using 
Gaussian elimination, this costs L3 1/ ?o(l) steps for each prime, i.e., LW + ?(1) steps 
in total. By combining these results with the Chinese remainder theorem, we easily 
obtain the exact value of det A in time less than La2 + o(l). This proves 

THEOREM 3.5 (ERH). There is a probabilistic algorithm with run time LW + o(1) 

which computes a multiple H of the class number h - N with log H = L/F + ?(l). 

Let H be the odd part of H. By raising each generator of the class group to its 
Hth power, we obtain a generating system of the 2-Sylow group S2-N of C_N. The 
2-Sylow group of C N is defined by 

S2,-N= {fE CNIu EN: f 2 = 1C}N 

The cost for computing a generating system of S2-N is L/A +?(1). (Note that 
Theorem 3.3 gives us a generating system of C_N of size Lo(').) Next we prove 

THEOREM 3.6. Given any generating system of S2>- N of cardinality r, we can compute 

all ambiguous forms in time r- LO(l) (provided that N has at most one factor less than 

L). 

Proof. The assumptions of Theorem 3.6 imply that there are at most LO(') 

ambiguous forms in C_N (compare Section 2). Let fl, ... ., fr E S2-N\ 1C N be a 
generating system of the 2-Sylow group S2_N. From fi,... , fr we compute all 
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ambiguous forms of C_N by the following algorithm: 

ALGORITHM 3.7 (H. W. Lenstra, Jr., see [21]) 
1. inPUtfl,. ,fr; i:1; X:= O 
2. f:= fi 
3. computef,f ,...,f2 and let m:= min{u E N: j2u = 1C-* g:= j2m1 
4. if there exists 1, ..., a, E {?, 1) with g = Ha gi 

then compute the set J with g = FHj gj and goto 5 
else X:= X + 1; fI:= f; gx:= g; mx:- m; goto7. 

5. if there exists a j E J with m1 < m then choose a k E J with minimal Mk; 
exchange f with fk, g with gk, m with Mk. 

6. [now we have g = fi -'' = H f ; and m < m1 for all j EJ]. 
f:= f -FrI f ;J iff /= 1 then goto 3 else goto 7. 
[the new m to be computed in step 3 will be smaller than the present m since 
f 

2m _ 1 holds for the new f ]. 

7. if i = n then output all ambiguous forms generated by g1, . . ., gx and stop 
else put i := i + 1 and goto 2. 

Whenever the algorithm has run through step 4, the group generated by f, ... ,r 
is the direct product of the r different cyclic groups generated by fi, i = 1,.. ., r, 
and, furthermore, the following properties hold: 

2mi =ord( );. 2m- j =1 ... ., n 

(here ord(f ) is the order of the class f in the class group C_N). 
When the algorithm has run k times through the main loop from step 2 to step 7, 

then all forms generated by fl, . .. f,fk are contained in the group generated by 
f, .. ., fx. Hence the algorithm outputs all ambiguous forms of C-N when the input 
is a generating system of S2,-N. This proves the correctness of Algorithm 3.7. 

For the run time analysis of Algorithm 3.7 we remark that the main loop (from 
step 2 to step 7) is performed r times and the inner loop (from step 3 to step 7) is 
performed at most O(log h-N) times. The most expensive step is step 4. The run 
time of step 4 can be bounded by LO(1) since there are at most LO(1) ambiguous 
forms. Hence the algorithm has run time r- LO(l). 

This finishes the proof of Theorem 3.6. 0 
Theorem 3.5, the above discussion, and Theorem 3.6 yield a probabilistic algo- 

rithm which computes all ambiguous forms in the class group C_N. Using the 
connection between ambiguous forms and factorization (see Theorem 2.4) we obtain 

THEOREM 3.8 (ERH). There is a probabilistic algorithm with run time L(N)V?+o(1) 
which computes the complete factorization of N with probability > 2 

Remark. All factorization algorithms considered in this paper are probabilistic. 
Apart from the number N to be factored, they take some input from a random 
source. By repeating the same algorithm (with different input from the random 
source) the probability of failure decreases exponentially with the number of 
repetitions. In our theorems we will always state the total amount of run time needed 
to factor N with probability at least I. 
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4. Generation of a Nonsingular Form Matrix. The purpose of this section is to 
prove Theorem 3.4. Let z be a fixed positive real number. In order to factor N we 
choose a prime form base P, with / = L(N)z. We want to compute a nonsingular 
form matrix for the prime form base Pl. A sufficient condition for a matrix (aij) to 
be nonsingular is that (aij) is strictly diagonally dominant, i.e., IaI > Ej iIa ijI for 
all i, see [41]. We prove 

THEOREM 4.1. There is a probabilistic algorithm with run time Lz?o(1) which on input 
N, i computes the ith row vector of a strictly diagonally dominant form matrix with 
probability > L- 1/4z? (1). The coefficients of this row vector are of size O(N). 

Proof of Theorem 3.4. By iterating the algorithm in Theorem 4.1 Ll/(4z)+ o(l) . log(lz) 

times, we obtain an algorithm which succeeds with probability > 1 - Lz. Alto- 
gether, we have to generate n, n < Lz, row vectors of the matrix. This gives us an 
algorithm for generating a form matrix with run time L2z?l/(4z)?o(l). Choosing 
z = 1/ V8 yields Theorem 3.4. O 

Proof of Theorem 4.1. Consider the prime form base P,, 1 = L (N) z. Let n = n (N) 
be the cardinality of P,, let I Ip" be the prime forms in natural order, and let r 
be the integral part of 1N + 1. 

On input N, i, the following probabilistic algorithm computes the ith row of a 
strictly diagonally dominant form matrix of the prime form base Pl. 

ALGORITHM 4.2. 
1. choose a1, .. ., an E Z with 0 < a., an < r l at random and indepen- 

dently with respect to equidistribution 
2. compute the reduced form (a, b) E (Jp)2n r1 . FlH1(I= )aj 

3. if there is a factorization a = Hln. pJ%, then goto 4 else fail and stop. (Here 
we factor a by trial division.) 

4. compute y1 = +,Bj such that (a, b) E Hln=>(Ipj)Tj according to Theorem 3.1. 
For j= 1,...,n let aij= a-j -yj?+8i 2n r 1 (with 3ij = 1 if i=j and 

ij =0 if i / j). 
5. output ai1 ..., ain and stop 

Obviously, the run time of Algorithm 4.2 is bounded by Lz+o(l), and in case of 
success (i.e., if the algorithm terminates in step 5) it computes coefficients ai1, ..., ain 
of size O(N) satisfying Fln=(Ipj)aij = 1CN (Note that (Ip)2*rl H=1(IPj)aj = 

rIJ= p)'Yj and aij = aj-yj + ?ij 2n r 1 by construction.) Furthermore, laiii > 

S i I a ij I is satisfied. 
Hence (ai1, ..., ain) is the ith row vector of a strictly diagonally dominant form 

matrix. It remains to conmpute the probability of success of Algorithm 4.2. For this, 
we have to prove two propositions. 

PROPOSITION 4.3. Let (a, b) be the form computed in step 2 of Algorithm 4.2. For 
any class f E C_N the probability that (a, b) lies in f is at least (1 - o(1))/hN, 

where o(1) is a function depending only on N with o(1) -* 0 for N x-* . 
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Proposition 4.3 says that all classes in step 2 occur with approximately equal 
probability. In Section 5 we prove 

PROPOSITION 4.4 (ERH). The number of reduced forms (a, b) E C_N such that a 
factors completely over the primes Pi' ..., Pn of the prime form base Pl, I = Lz, is at 
leasth -N . L-/(4z)+o(l) 

Propositions 4.3 and 4.4 immediately imply that Algorithm 4.2 succeeds with 
probability at least L-l/(4z)?o(l), since Algorithm 4.2 succeeds whenever the a 
computed in step 2 completely factors over the primes Pi' .p. ., Pn. This finishes the 
proof of Theorem 4.1. o 

Proof of Proposition 4.3. Let a1, ... , a?n be chosen at random as in step 1 and let 
(a, b) be the form computed in step 2. For any class f e C_N let wf be the 
probability that Hljn=j(Ip)ai = f. Then the probability that (a, b) lies in f equals 
Wf.(I)2n r I for any f E C-N. Hence it suffices to show Wj> (1-o(l))/&N for all 
f E C_N. Let f be an arbitrary class in C_N. 

The numbers (a1, ... , an) chosen in step 1 will be considered as a vector 
?l = (a1, ... , a,) E Zn. Let W(m) C Zn be the cube defined by W(m) = 

{(a1, ... a n): 0 < laj < m, j = 1,...,n}. Let T be the homomorphism defined in 
Section 3, 

n 

(a,,. . ., an) = 1 (I)a 
J=1 

Then wf can be expressed as follows: 
#{a E W(r 1): T(a) =f} 

Wf #W(r - I) 

since a1,... a,n were chosen independently and equidistributed in the interval 
[0, .. ., r * 1). Let x be any element of Zn with T(x) = f. Then we have 

?[W(r. I) nf(x + kerT)] 
f #W(r - I ) 

Now we need a lemma to finish our proof. 

LEMMA 4.5. Let A C Zn be a lattice with #(Zn/A) = h. Then for any x E zn, 

#[W(m) n(x + A)] 1 _- 

#W(m) h m J 

Proof of Lemma 4.5. We use induction on the dimension n of the lattice. The 
lemma is clearly true for n = 1. Now let us assume that the lemma holds for 
dimension n. Then we show that it also holds for dimension n + 1. We cut the 
(n + 1)-dimensional cube W(m) into m different n-dimensional slices WO, . . ., Wm-i 
with Wi = {(xl, Xn+1) E W(m): xn+1 = each slice being an n-dimensional 
cube containing mn integer points. Let Qi be the set of cosets in Zn+ /A which have 
a representative in the hyperplane generated by the n-dimensional cube Wi. Since 
Zn+ /A is a group, all Qi have equal cardinality h', and we have Qi= Qj if 
and only if i =j mod h" [with h'- h" = h = #(Zn+'/A)]. For any x E zn+l, 

the set (x + A) n Qi is nonempty for a suitable i. Hence there are at least 
(m - (h" - 1))/h" different n-dimensional cubes Wi, 0 < i < m, containing at least 
one point of x + A. Using our induction hypothesis on the lattice QO in zn we 
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can easily show that each of these Wi contains at least ms/h' (1 - (h' - 1)/m) 
points of x + A. Hence, 

(m- ( h't - I m n h( h- 
I 

m (1 - h- I h (1 h'- 1 mn1 h 1 
h' h" m m h m 

This proves the lemma for dimension n + 1. fl 
Applying our lemma to the lattice ker p we obtain 

#{asE= W(r 1): cp (a)=} f ) (1I h-N I 

h- [1 - o(lm], 
h-N 

since h-N = 0(N) logN (by Theorem 2.2), r 1 > AN 1, and logN = o(l). This 
finishes the proof of Proposition 4.3. 0 

5. The Number of Reduced Forms with Leading Coefficient Free of Prime Factors 
> y. The purpose of this section is to prove Proposition 4.4. For this, we need a 

lower bound for the number of reduced forms with leading coefficient free of prime 
factors > y. At present, satisfactory lower bounds for the number of reduced forms 
are only available under the assumption of the Extended Riemann Hypothesis which 
we assume to be true throughout this section. 

For any fixed negative discriminant -N, N > 0, we denote by F-N(X, y) the set 
of reduced forms (a, b) E QF_N with a < x such that for any prime p dividing a 
the properties ( N) = 1 and p < y hold. For counting the set FN(x, y) we 
introduce the function 

4'_N(X, y):= ?{a < x: any prime p dividing a satisfies p < y and (-N) = I 

LEMMA 5.1. For any x < VNK/2 we have #FN(x, y)( > Y) -N(X, y). 

Proof. Any natural number a counted by '_N(X, y) splits into prime factors p 
with ( p') = 1 and p < y. Hence for any such a there is a form (a, b, c) E QFN 
(which may be obtained by multiplying prime forms according to Theorem 3.1). 
Using a suitable SL2(Z)-transformation (a, b) -- (a, b + 2Xa), X E Z, we may 
ensure that - a < b < a holds. Then we have 

b2+ N N 

C = a 

i.e., (a, b, c) is reduced. Thus we have constructed an injective mapping from the set 
counted by 41N(X, y) into the set F_N(X, y). O 

We now show the following lower bound for 4A_N(X, y). 

THEOREM 5.2 (ERH). For any E > 0 there is a c(E) such that for any x, y, N with 
x > 10 and 

max{ (log)+E (log N )2+,E } y < exp[ (log x)1-E] 

the following property holds: 

4-N (X, Y) > X.exp[-u .(logu + loglogu + c(E))], u = l?gx ~~-N(X' Y) x ~~~~~~~~~~log v 
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Proof of Proposition 4.4. We have to show for any fixed real z with 0 < z < 1 that 

#F_N(o, LZ) > h-N . L- 

where L = exp( log N* log log N). From Theorem 2.2 and Lemma 5.1 we obtain 

#F-N(oo, LZ) 4-N (V/2, Lz) 

h -N AN - log N 
A simple computation using Theorem 5.2 yields 

4'- N (VN2, LZ) >, VN . L- 1/(4Z)+ O(1) 
for sufficiently large N. This proves 

#F-N(X, LZ) > hN . L-1/(4z)?+o((1) 
It remains to prove Theorem 5.2. Canfield, Erdos, and Pomerance [4] and 

Pomerance [29] have shown lower bounds for the number-theoretic function 4(x, y) 
defined by 

4 (x, y):= *{a < x: any prime p dividing a satisfies p < y}. 
To prove Theorem 5.2, we proceed exactly as in [29]. In order to show a lower bound 
for +(x, y), a good estimation for the prime number counting function 'g(x) is 
needed. For our purposes we need a good estimation for the following modified 
prime number counting function: 

T -_N (X):= # {prime numbers p < x with (-N/p) = 1}. 
At present, a sufficiently sharp estimation for g-N(X) is only available under the 
assumption of the Extended Riemann Hypothesis: 

THEOREM 5.3 (ERH). We have 

1TN (X) - Li(x) | = o(x log(Nx)). 
Here, Li(x) = f2x dx/log x is the logarithmic integral. 

Sketch of the Proof. For the proof of Theorem 5.3 we use an effective version of 
the Chebotarev density theorem shown by Lagarias and Odlyzko [15]. First, we 
briefly state some facts from algebraic number theory. For details we refer to [2], 
[17]. 

Let Q be the field of rational numbers, and let E be an algebraic extension of Q 
with degree n and Abelian Galois Group Gal(E/Q). Let M be the maximal order 
of E and let d be the discriminant of E. Let $ be the set of prime ideals in M. For 
any rational prime p let (p) = p M be the principal ideal of p in M. Then (p) has 
a unique decomposition, 

(p) = pJ r ...,prEJ1-E 

The prime ideals P1,..., Pr are called the prime ideals above p, and the rational 
prime p is called unramified in E if all exponents in the above decomposition equal 
1. 

For any prime p unramified in E there is a unique automorphism (p, E/Q) E 
Gal(E/Q), called the Frobenius automorphism of the prime p, which induces the 
automorphism x - xP, x E M/P, on the field M/lp for any prime ideal P,, lying 
above p. For any a E Gal(E/Q) let gjx(x) be the number of rational primes p < x 
unramified in E which satisfy (p, E/Q) = a. Under the assumption of the Ex- 
tended Riemann Hypothesis the following proposition holds. 
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PROPOSITION 5.3 (ERH). We have 

|. (x) - Li(x) 1 ix (2- logldl + n logx) 
#Gal(E/Q)4*Gal(E/Q) 

For a proof of Proposition 5.3 we refer to [15] or [27]. We apply Proposition 5.3 to 
the field Q(V/ZK). Let us first assume that N is squarefree. Then Gal(Q( -N)/Q) 
is isomorphic to { ? 1) (where 1 corresponds to the identity and - 1 corresponds to 
the automorphism induced by - of Q( -N)). The Frobenius 
automorphism is given by 

(p, Q( -N)/Q) =(wN). 

(The primes ramified in Q( - ) are exactly the primes with (pN)= 0.) Thus 
Proposition 5.3 implies that 

Ikr-N( X)- Li(x) | = o(X * log(Nx)). 

This proves Theorem 5.3 for squarefree N. For nonsquarefree N (with N = N' f 2, 
N' squarefree) it suffices to remark that 1T -N(X) - STN'(X)I = O(log f ), since any 
prime p with ( N) = ( p ) necessarily divides f. C 

Now we are going to show Theorem 5.2. Let P be the set of prime numbers with 
(N) = 1. We put 

(5.4) wl := Yl - 2/(3 log u) W2 := Y1 - 1/(3 log u) 

with u = log x/log y as in Theorem 5.2. Let [u] be the integral part of u and let M 
be the set of all positive integers which are products of exactly [u] primes 
Pi, ... , Plu1 E P satisfying w1 < p, < w2, v = 1,..., [u]. Then 

(5.5) A_N(X Y) >- E, +-N(XIM,WJ), 
meM 

since every natural number a counted by N N(X/M, W1) is free of prime factors 
> w1 and all prime factors of m, m E M, lie in the interval (wl, w2], w2 < y. For all 
m E M we have 

(5.6) W1u-l<mw" 

The properties y S exp((log x)l-') and u = log x/log y imply u > (log x)e. Hence, 
for sufficiently large x, 

x1/log u > X 1/"u . X 2/(3log u) > y . y 2(u -1)/(3 log u) 

(5.7) =X .Y (U-1) .Y 2(u1)/(3logu) = X/wu- 1> x/m 

> X/W2j = X/Xl - 1/(3log u) = x1/(3log u) 

by (5.4) and (5.6). Now we put u(m) 1 + [(log(x/m))/(log wl)]. By definition of 
w1 and u(m), and by (5.7), we obtain 

1+ logx 1 
log u log y * (1 - 2/(3 log u)) 

> u m>log x1 
3 log u log y * (1-2/(3 log u)) 

Now, using u = log x/log y, we obtain 

(5.8) U (og u ( 1 o) u log u log u j3 log u 
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We now put w(m) (x/m)l/u(m). Then, 

1 = (x/m )(log W1)/log(x/m) 

? m)1/U(M) [def. of u(m)] 

= w(m) [def. of w(m)] 
> (X/M)l/(l+log(X/m)/logwl) [def. of u(m)] 

( log(x/m) * log W1 

5 log(x/m) + log w, 
= W1/(l +(log wj)/log(X/M)) 

> A- (log w1)/log(x/m) - 1 

> W1 (logY)/log(x/m) [since w1 < y] 
= W1-(logx)/(u*log(x/m)) [def. of u] 

> 1 -(log x)/(u- log x/(3 log u)) [by (5.7)] 

= 1-3 .(logu)/u 

The product of u(m) different primes less than w(m) does not exceed the value 
w(m)u(m) = x/m. Hence (5.9) implies 

(5.10) -NXmw)> () >( N( )) 

From w(m) > (3logu)/u > y1 -2/(3logu)-(3logu)/u and y > (log N)2+e we obtain 
w(m) > (log N)2+e/2 for sufficiently large x and y. With this information, a 
straightforward computation using our "prime number theorem" (5.3) yields 

T-N( w(m)) >~, - w(m) 
4 log w (m) 

for sufficiently large x and y. Applying this fact to (5.10), we obtain 

(w(m)) U(M) 

4u(m) log w(m)) 

=- ? exp(-u(m) *(logu(m) + loglogw(m) + log4)) m 

(5.11) X exp(-u(m) .(logu(m) + [since w(m) u(m) = x/m] 
- m exp(-u(m) (logu(m) + log logy + log 4)) 

[since w(m) <w, <y] 

=- exp(-u(m) *(logu - loglogu + loglogy + 0(1))) m 

[by (5.8)]. 
From y S exp((log x)l -E) and y = xl/ u we obtain 

loglogy S (1 - E) * loglog(yu) = (1 - E) *(logu + loglogy) 
and hence 
(5.12) Eloglogy S (1 - E) * logu S logu. 
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By (5.11) and (5.12) there is a real constant c'(E) such that 

(5.13) {P-N(x/m,wl) 
- - exp (,-) u(m) -logu) 

> - * exp(- c'(,E) * U) [by (5.8)] 
m 

for sufficiently large x. Inequalities (5.5) and (5.13) imply 

(5.14) {~-NX( Y) > - exp(-ct(,) - U) *,ml 
meM 

To finish the proof of Theorem 5.2, we have to estimate the sum EmE Mm. By 
definition of M we have 

lu] 

(5.15) E - > E P /lu]!. 
meM P peP,wl <pw2 

Using standard partial summation arguments from number theory (see, e.g., [11]), 
we can easily prove the following corollary of our "prime number theorem" 5.3: 

COROLLARY 5.16 (ERH). For any E > 0 there is an E' > 0 such that 

E p >: 2 (log log w2 log logw1) O- O(w7') 
p EP, wl <p w2 

for any w1, w2 with (log N)2+e/2 W1 W W2. 

Inequality (5.15) and Corollary 5.16 imply 

meM > ( log logw2 loglogw O(w ) u 

> I I - 1/(3 log u) _ O(y- e/2 [u] [by 5.4 

(5.17) 1 [uJ 

> og - O(u-e'/2)) /[ ]! [since u < logx < y] 

> (i1 )u/[u]! [for sufficiently large x. 

Using Stirling's formula log(n!) = n log n - 0(n), we finally obtain 

(5.18) E m-l > exp(-u *(logu + loglogu + 0(1))) 
mEM 

for sufficiently large x. Inequalities (5.14) and (5.18) imply Theorem 5.2. O 

6. Refinements of the New Factorization Algorithm. Our new factorization algo- 
rithm consists of two parts. First we have to generate a form matrix A by Algorithm 
4.2. Next we have to evaluate the form matrix A. This means we have to compute a 
generating system of the 2-Sylow group of the class group from A which gives us the 
complete factorization of N. 

The run time of the new factorization algorithm depends on the size LZ of the 
prime form base. If we choose z too small, only few of the forms (a, b) computed by 
Algorithm 4.2 can be factored over the chosen prime form base. If we choose z too 
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large, the factorization of the leading coefficient a will consume too much time. A 
third problem arises when we choose z too large: The evaluation of the form matrix 
will consume too much time. To speed up our factorization algorithm, we have to 
look at both generation and evaluation of a form matrix. 

1. Fast Generation of a Form Matrix. First we can speed up Algorithm 4.2. The 
critical part of Algorithm 4.2 is step 3 where the leading coefficient a of a reduced 
form must be factored. This step has run time LZ when executed once. Note that the 
reduced form to be factored over the prime form base P, is (almost) equidistributed 
in the class group C-N 

In order to speed up our factorization algorithm, we need a fast method to factor 
the leading coefficient of a reduced form over a given base of prime forms. This 
means that we look for a fast method to find the small factors of a natural number. 
Pollard [28] and Strassen [40] introduced a fast method based on the fast Fourier 
transform for finding small factors of a number a. Using the Pollard-Strassen 
method, we can find all prime factors p < LZ of a natural number a < VK in time 
LZ2 +o(l), see Schnorr [34]. 

There is still another way for speeding up the generation of a form matrix, called 
the early abort strategy, see [29]. For the overwhelming majority of the a generated 
by Algorithm 4.2 the full allotment of time (LZ/2 for the Pollard-Strassen method) is 
spent just for finding that a cannot be factored over the chosen prime form base. A 
natural idea that many have had is to abort working with a special form (a, b) if at 
some prechosen point the coefficient a does not look likely to be composed solely of 
primes below LZ, and to generate another form (a, b) instead. We shall make this 
idea more precise in Section 7. In the analysis of the early abort strategy, which is a 
bit difficult, we follow Pomerance [29]. In Section 7 we prove the following result: 

THEOREM 6.1 (ERH). There is an algorithm with average run time T = LO(') which 
factors a fraction of at least w = L-z/4-1/(4z)+o(1) of the reduced forms of the class 
group C_N over a given prime form base PLZ, 0 < z < 1. (It is assumed that the input 
form is equidistributed in the class group.) 

2. Fast Evaluation of a Form Matrix. In Section 3 we saw that the determinant of 
a nonsingular form matrix is a multiple of the class number and that a multiple of 
the class number immediately gives us a generating system of the 2-Sylow group of 
the class group and hence the complete factorization of the discriminant N. 
Computing the determinant of an n x n-matrix, n < LZ, can be done via Gaussian 
elimination in L3z+o(l) arithmetic operations. Unfortunately, the coefficients of the 
matrix may grow dramatically, and we saw in Section 3 that this costs another factor 
LZ if modular arithmetic is used. 

Fast matrix multiplication techniques introduced by Strassen [39] and others can 
be used to advantage for speeding up the computation of the determinant of a 
matrix. The present state of the art is represented by the algorithm of Coppersmith 
and Winograd [6], which allows us to perform multiplication, inversion and comput- 
ing the determinant of an n x n-matrix in 0(n2495548) arithmetic operations. Using 
this fast algorithm, we can evaluate a form matrix in time L(3495548)z+o(l). 

There is a new method that solves sparse linear equations Ax = b in a finite field 
in time H(A)' n * (log n)0(1), see [43]. Here H(A) denotes the number of nonzero 
entries of the sparse n x n-matrix A. This method can be used to find nontrivial 
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linear dependences modulo 2 in a form matrix. Having found such a linear 
dependence u e (0,1)", A uT = 0 mod2 Zn, we can compute the ambiguous 
form Tp(A - uT/2) which corresponds to a nontrivial factorization of N with a 
reasonable chance. (Here, p Z' -z* C_N is the homomorphism defined in Section 
3.) In Section 8 we prove 

THEOREM 6.2. Suppose there are functions c = c(N), 1 = l(N), T = T(N), w = 

w(n), c(n) < 1(n) < N1/4 with thefollowingproperties: 
6.2.1. The prime forms Ip; E C_N, P1 < c generate the subgroup of the ambiguous 

forms of the class group C_N. 

6.2.2. There is an algorithm with average run time T which factors a fraction of at 
least w of the reduced forms of C_N over the prime form base PI of C_N into 
at most (log N)0(1) prime form factors. 

Then there is a probabilistic algorithm with run time c - (T - w1 * 1 + 12) _ log(N)0(1) 
which factors a composite number N with probability > 1/2. 

Remark. With some additional effort, the algorithm in Theorem 6.2 can be 
modified in such a way that it yields a proof of primality for prime numbers N. 

Conclusion. From Theorems 6.1 and 6.2 (with c = 2 - (log n)2, w = 

L1/(4z)-z/4?+(1), T = LO('), 1 = LZ) we obtain a factorization algorithm with run 
time Lmax{2z, 5z/4+1/(4z))+o(l). The optimal choice for z is 1/ V5. This gives us the 
following 

MAIN THEOREM (ERH). There is a probabilistic factorization algorithm which yields 
the complete factorization of a natural number N in time LVF?+o(1) with probability 
> 1/2 (where L = expVlog N loglog N). 

Using the Pollard-Strassen method, the early abort strategy and a fast elimination 
method, Pomerance [29] obtains the same run time exponent for the factorization 
algorithm of Morrison and Brillhart. Instead of the Extended Riemann Hypothesis 
he uses other heuristic assumptions. 

Open Problems. 1. There is a new factorization algorithm due to Lenstra [23] 
which uses elliptic curves. This new algorithm is very efficient in finding the small 
prime factors of a natural number. If may turn out that this factorization algorithm 
can be used to improve Theorem 6.1. Using elliptic curve methods to factor the 
leading coefficient of a reduced form, we may possibly obtain a factorization 
algorithm with run time L1 + o(l). 

2. In Algorithm 4.2, which is used for generating a form matrix, we try to factor 
the leading coefficient a of the reduced form f = (a, b, c) in a certain class [ f ] of 
the class group C_N. It would be sufficient to factor the leading coefficient a' of any 
form (a', b', c') in the same class [f ]. It is easy to see that an integer a' is the leading 
coefficient of any form (a', b', c') in the class [f ] if and only if a' is represented by 
the form f, i.e., there are integers x and y with 

a' = f (x, y) = ax2 +bxy + Cy2. 

f (x, y) is a quadratic polynomial in x and y. When we restrict the domain R of this 
polynomial in a suitable way, we can find the small factors of all values f(x, y), 
(x, y) E R, by sieve methods. The elaboration of this idea yields a factorization 
algorithm which is very similar to the quadratic sieve algorithm introduced in [29]. 
For analyzing this modified algorithm we need an assumption of the following type: 
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Assumption 6.4. The forms (a, b) E QF-N with a free of prime factors > L', 
a < x (where x is in the range VK ... L VK) are approximately equidistributed 
over all classes of the class group. 

It is not known whether a suitable precise version of Assumption 6.4 can be 
shown under the assumption of the Extended Riemann Hypothesis. If this were the 
case, we could also analyze our modified algorithm and possibly obtain a run time of 
L1 + o(1) 

7. Analysis of the Early Abort Strategy. The purpose of this section is to show 
Theorem 6.1. In order to factor the leading coefficient a of a reduced form we use 
the following procedure instead of trial division. 

Let k E N and let cl, ..., Ck, C 1, ..., ok be fixed positive real numbers with 
cl + * * * +ck < 1 and 0 < 51 < ... < ok < 1. For any natural number a let a[t] 
be the part of a that consists entirely of prime factors > t. Let (a, b) E C_N be a 
reduced form selected at random with respect to equidistribution in the class group 
C_N. 

(a, b) is aborted in stage 0 if gcd(a, N) > 1, 

(7.1) (a, b) is aborted in stage i, i = 1,..., k if a[L*i'z] > Ni-cl- C 

(a, b) is aborted in stage k + 1 if a[LZ] > 1. 

If (a, b) is not aborted, it will completely factor over the prime form base PLZ. 

Otherwise, our attempt to factor the reduced form (a,b) fails. This modified 
procedure will be called the early abort method with k early aborts and parameters 
C1, * * *, Ck, D **... *Ok. Let Mi, i = 1, ..., k + 1, be the set of reduced forms of 
QF-N with the property that a is not aborted at stage 0, 1, . . ., i. Then the success 
rate w of the early abort method (with k early aborts and parameters Cl, ... . Ck, 

1 * *. I ,k) iS given by 

(7.2) w = #Mk+l/h_N- 

Its average run time T is given by 

k+1 

(7.3) T= L* z+0o(1) * #Mj-j1h, 
1=l 

where we have put MO:= hN and 1k?= 1. Using the Pollard-Strassen method 
for finding small factors, the run time can be improved to 

k+1 

(7.4) T = E L*jYz/2+o(1). #Mil/h_N- 
i=l 

Our goal is to minimize the product T- w 1. For this, we have to evaluate Mi, 
= 1, .. ., k + 1. The result, which we will prove at the end of this section, is 

PROPOSITION 7.6 (ERH). We have 

#Mi < N . L-cj/(4*j1z)- -cj/(4*j.z)+o(l) i = 1,..., k, 

#Mk +l1 > N L-cj L(4*jZ)- TCkho(4ekm Z)--C1 * ) Ck.)(4 ) + O 
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Remark. It can be shown that the bounds in Proposition 7.6 are sharp, see [29]. 
Now, from (7.2), (7.4), and Proposition 7.6 we obtain 

T. w-1 < Lmax({fl,-*,fkj) +1o(l) with 

(7.7) f+i i z12 + cl-(4 *. z) + +ck(4k * i) 

+ Cl- Ck)1(4z), -k, 

fk + z/2 + (1 - cl - * Ck)1(4z). 

The optimal choice for the ci, ti, i = 1,...,k, is 

2i - z2 i 
ci 

(k+ 1)2' k+1; 

compare [29]. Using these optimal values we obtain from (7.7) 

(7.8) T* w-1 < LZ/4+z/(4k+4)+l/4z+o(l) T < LZ/(2k+2)+o(l) 
w-1 < LZ/4+l/4z-z/(4k+4)+o(l) 

By letting k slowly grow towards infinity we finally obtain 

(7.9) T * w- 1 < LZ/4+l/(4z)+o(l) T = LO(), w -1< Lz14+1(4z)+o 

This proves Theorem 6.1. 
We still have to prove Proposition 7.6. For this, we need some additional 

information about the number of reduced forms which split over certain sets of 
prime forms. Let F-N(X, y, z) be the set of all reduced forms (a, b) e QF-N with 
a < x, gcd(a, N) = 1, such that any prime p dividing a satisfies z < p < y. Note 
that the set F-N(X, y) defined in Section 5 equals F-N(X, y, 1). Then we need 

THEOREM 7.10 (ERH). Let a, /3, e be fixed nonnegative numbers with 0 < / < a < 1 
and e > 0. Then for any c with e < c < 1 we have 

(7.10.1) F-N(VN, La, LO) = N * L- 

(7.10.2) FN - (N, N, L ) = X - LO('). 

Here, o(1) is a function depending only on N with o(1) -* 0 for N --* xo. 

Sketch of the Proof. We first show the lower bounds in (7.10.1) and (7.10.2). For 
this, we define 

+-N(X' Y, Z) 

a < x: any prime p dividing a satisfies z < p < y and(-N) = 1}. 

Then for any x < VN/2 there follows F-N(X, Y, z) > 4_V(X, Y, z), compare 
Lemma 5.1. With the method discussed in Section 5 we can prove the following 
analog of Theorem 5.2 (compare [29, Theorem 2.2]): 

PROPOSITION 7.11 (ERH). For any e > 0 there is a c(e) such that for any x, y, z, 
Nwithx>10 and 

max{ (log x)l +e, (log N)2+e} < y < exp (logx)1-e], z < yl - l/log u 

the following property holds: 

wru -N(X y, lz) /o y*expf-u*(1ogu+lo1gu+C(E))]I 
where u = log x/log y. 
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This yields the lower bound in (7.10.1). The lower bound in (7.10.2) follows from 
4JN(X, X, Z) > T-N(X) - '-N(z) and our "prime number theorem" 5.3. Now we 
show the upper bounds in (7.10.1) and (7.10.2). Here we use a method due to Rankin 
[31] and de Bruijn [3]. Let 

be the set of primes p < y with ( pN) 1, 

NY,-N be the set of natural numbers a such that all 
factors p of a satisfy p E y,-N, 

f (a) be the number of different prime factors of a. 
Theorem 3.1 implies that for any a with gcd(a, N) = 1 there are at most 2f(a) 

different reduced forms with leading coefficient a. Hence, for any 'q > 0, 

F-N(XI Y, Z) < E 2fa E 2 (xa 
aeNyXN; asx a NY7N; a<x 

Axq 2 2f(a) a-q = xa 1l 1+2 f,p-^?q 
a -Ny~- N PG Py s-N V= 1 

(7.12) <x H (1 _ p-) 2 <XX. H (1 _ p -) 2 (7.12) K1x ,X f 
P PY,- N pSy, p prime 

= xa exp(- 2 -E log(' - p -,) 
p<Y 

= X. exP(2- E p1 + ? Sp )) 
p _<y p py 

For further estimation of (7.12) we use the following fact: 

( 1 * ) (1- ) + Ilog('1- q)) ifO0< < 1, 
(7.3) log log y + 0 (1) if) 1, 

p <y 

o(- )) if > 1, 

which can be proved with standard methods of number theory, see [11], [30]. We will 
get the upper bound in (7.10.1) with q = 1 - (log u + log log u)/log y, where u = 
log x/log y and x, y are the first two arguments of the function F-N in (7.10.1). 
The upper bound in (7.10.2) is obtained with q = 1. The details of this computation, 
which are a bit tedious, are left to the reader. 

This finishes the proof of Theorem 7.10. O 
Remark. Note that the Extended Riemann Hypothesis is only needed for the 

proof of the lower bounds in Theorem 7.10. 
Proof of Proposition 7.6. We show the proposition for the case k = 1, and we write 

c, a for cl, 191. We leave the case k > 1 to the reader. So let us assume k = 1. 
First we prove the lower bound for #M2. By definition of M2 we have 

#M2 > #F-N(V I LO zI1) #F-N( 2N 
c 

LZ LO 

since the product of two reduced forms (a, b) and (a', b') with a * a' < VN/2 is 
reduced. Now a simple application of Theorem 7.10 yields the desired lower bound 
for M2. 
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Now we prove the upper bound for M1 in Proposition 7.6. By definition of M1 we 
have 

(7.14) #M= 1, 
(a,b)EQ (a',b')EQ' 

where Q = F_N(N N ,Nic Lo z) and Q' = Q'(a) = F-N(V /a, Lz, 1). 
(Note that any reduced form (a, b) E QF-N satisfies a < rN.) (7.14) implies a 
< N1 , i.e., NK/a > ~N1V. Hence by Theorem 7.10 we obtain 

E 1 = #F-N( L'Z, l) < R~ * L-/4Z) 
(a', b') E Q' 

With this, and (7.14), we obtain 

(7.15) #Ml < VN . L-/4 . E a-l 
(a, b) E Q 

Now, using Theorem 7.10, part (7.10.2), it is easy to show that E(a b) E Q a- LO(') 

by standard partial summation arguments (see, e.g., [30]). This yields the desired 
upper bound for M1. C 

8. Fast Evaluation of a Form Matrix. The purpose of this section is to prove 
Theorem 6.2. Let N, 1, C, w, T be as in Theorem 6.2. We assume that N is 
composite. Then h-N is even. Let n = #{IP: p1 < 1), m = #{IP: p1 < c}. Let Cp: 
zn - C_ N be the mapping defined in Section 3 and let F = kerqp. For any integer 
k x n-matrix A = (aij) let A(A) be the lattice generated by the row vectors of A, 

A(A):= a1Z + ... +akZ with ai = (ail,...,ain)9 i = l,...,k, 

as in Section 3. A form matrix is a matrix A with A (A) c kerqp. We denote the 
group of ambiguous forms in C_N by B. Then B = p(I/2 n Zn). We generate a 
form matrix A = (a1j), i, j = 1,..., n, as follows: 

ALGORITHM 8.1. 

1. put i = 1 
2. choose ail ... ., aim E Z with 0 < ail, ... , aim < N at random and indepen- 

dently with respect to equidistribution 
3. compute the reduced form fi EC Hlml(Ip ) aj 

4. try to find a factorization (/3il,...,/93in) with - = H p_j(I )/J using the 
algorithm described in (6.2.2). If fi is successfully factored, goto step 5, else 
goto step 2 

5. output the ith row vector ai = (ail, .., ain) with aij = aij- ij for j = 

1,...,n and a1ij = Oforj > m 
6. put i = i + 1. If i < n goto step 2, else stop. 

The following lemma states that the form fi computed in step 3 of the algorithm is 
approximately equidistributed in the class group. 

LEMMA 8.2. Let f be any reduced form in C_N. Then the form fi computed in step 3 
of Algorithm 8.1 satisfies fi = f with probability h -*. (1 + o(1)). 

Proof. With h-N < Ni1/2+o() (see Theorem 2.2) and 0 < ai1 < N the lemma 
follows immediately from Lemma 4.5. (Note that Ipl, ... . Ipm generate C_N). r 
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By Assumption 6.2.2 and Lemma 8.2 the average number of iterations of steps 2, 
3, 4 of Algorithm 8.1 which are performed to compute the n row vectors of the form 
matrix A is n - w-1 < l * w-1. The average run time for a single iteration of steps 2, 
3, 4 can be bounded by c * T - (log N)0(1). This leads to the following fact. 

LEMMA 8.3. Algorithm 8.1 computes a form matrix in time c- 1- T - w- 
(log N)0(1) with probability > ?2 

Let H(A) be the number of nonzero entries of the matrix A. By construction of A 
we have 

(8.4) H(A) < (c +(log N) 0(1)) * n 

This means that A is sparse. By combining the row vectors of A we can find a 
nonzero vector v E F n 2 - z. Then the form g = qp(v/2) is ambiguous and we 
have a reasonable chance that g leads to a nontrivial factorization of N. At the end 
of this section we will prove 

PROPOSITION 8.5. Let B' be a fixed proper subgroup of the group B of ambiguous 
forms of C N. Then the form matrix A computed by Algorithm 8.1 satisfies 

p [A(A)/2 n Zn] n(B\B') # 0 

with probability > - o(1). 

For composite N we let B' be the group of ambiguous forms which lead to a 
trivial factorization of N. Then Proposition 8.5 states that with probability > 2 - 

o(l) there is a linear dependence (modulo 2) U = (U1l ... . Un) E {o, l}n with A _ UT 
= 0 (mod 2 _ Zn) among the row vectors of the matrix A with the property that the 
ambiguous form qp(A - uT/2) leads to a nontrivial factorization of N. This means 
that at least half of the linear dependencies u of A (modulo 2) lead to a nontrivial 
ambiguous form qp(A - uT/2) E B \ B'. Note that the linear dependencies u of A 
(modulo 2) which lead to a trivial ambiguous form qp(A - uT/2) E B' form a proper 
subgroup of the additive group of all linear dependencies of A (modulo 2). Thus we 
obtain 

PROPOSITION 8.6. Let A be a random form matrix computed by Algorithm 8.1 and 
let u be a linear dependence (modulo 2) among the row vectors of A selected at random 
with respect to equidistribution. Then for composite N the ambiguous form qp(A - uT/2) 
leads to a nontrivialfactorization of N with probability at least 1 - o(1). 

So what we need is a fast method to find a linear dependence modulo 2 among the 
row vectors of a sparse matrix. Note that this process is similar to the elimination 
part in the factorization algorithms of Morrison and Brillhart and Dixon and the 
quadratic sieve algorithm of Pomerance, see [29] for details. 

There is a new method to solve sparse linear equations in a finite field, see 
Wiedemann [43]. This method can also be used to find linear dependencies among 
the row vectors of a sparse matrix. In [43] the following theorem is shown. 

THEOREM 8.7. Let A be an n X n-matrix over a finite field K. Then there is a 
probabilistic algorithm with run time n - H(A) - log(n - #K)0(1) which computes a 
uniform distributed random solution u E Kn to the equation A _ UT = 0. 
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From Lemma 8.3, (8.4), Proposition 8.6, Theorem 8.7 and n < 1 we obtain 

PROPOSITION 8.8. There is a probabilistic algorithm which factors a composite 
number N in time 

(12 + 1. T w1)* c *(logN)0(l) 

with probability at least - o(1). 

Theorem 6.2 is an immediate consequence of Proposition 8.8. It remains to prove 
Proposition 8.5. 

Proof of Proposition 8.5. We are going to show that qp[A(A)/2 n Z'] c B' is true 
with probability at most 1 + o(l). Let A = (ai1); ai =i - Pi, ai = (ail,..., a 

ai = (ail, ** in), fi = (fils *, * *n) be as in Algorithm 8.1. Let No be the greatest 
multiple of 2 hN which is less than or equal to N. Let W C Z n be the set 
{(xi..., xm. O ... I O) E znOn < xj < No, j = 1, ..., Im . To simplify our proof, we 
assume 

(8.5.1) ai GEWI i1.,n. 

Assumption (8.5.1) is true with probability > 1 - 2 * c * 1 hN *N-1 = 1 - o(1). 
It suffices to show that under Assumption (8.5.1) the property Tp[A(A)/2 n Z n] c B' 
is true with probability at most 2. Let X C Z n be the set of all possible vectors 
(,il,... , fn) computed by Algorithm 8.1. Then we may consider the values a1ij, ij 
computed by Algorithm 8.1 as a random variable in Wn X X'n in a natural way. For 
x E Wn X X'n let p(x) be the probability that Algorithm 8.1 computes x. 
Let Q C Wn X X'n be the set of all random matrices ((aij), (flij)) such that 

qp(A[(aij) - (i3)]/2 n Zn) c B'. Then our goal is to show p(Q) < 2. For this 
purpose, we construct a bijection ( from Wn X X'n onto Wn X X'n with the 
following properties: 

(8.5.2) p(x) =p( (x)) for anyx E Wn X Xn, 

(8.5.3) x E Q implies ((x) q Q for any x E Wn X Xn. 

Such a bijection t exists only if p(Q) < 2. It remains to construct (. 
Construction of (. Let f be any ambiguous form with f E B \ B'. Since B is 

generated by the Ip with j< m, there is a vector v = (vl,..., Vm, O,..., 0) E Zn 
with qp(v) = f. We have 2v E ker p since f is ambiguous. For any vector u = 
(U1 ...) E= Znlet umodNo bethevector(u',...,u') E Z n with u = u modNo, 
0 < Uj < No for j = 1, ..., n. Note that u' = u mod No implies u' = u mod2 - ker p. 

For any n X n-matrix U with integer coefficients and even determinant let v(U) 
be the smallest index i such that there exists a linear combination 

i-1 

Ui = 2.: R - uj mod 2 *zn, xi e tO, 1}, j-l = . .., i - 1. 
j=1 

(Here ul,..., un denote the row vectors of U.) If det U is odd, we define v(U) = 0. 
Now we define the bijection (: Wn x Xn Wn X Xn as follows: 

((U, V) =(U,J V), U, U E Wn, V e Xn 

with u' = (ui + 2 * v) modNo for i = v(U- V) and u' = ui for i = v(U - V). 
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(Here u',..., u' denote the row vectors of the matrix U' E Wa.) W is a bijection on 
Wn x Xn since v(U - V) = v(U' - V) by definition of v and U'. 

Since u' = u mod kerT for all i we have Tp(u) = (u'), and since the distribution 
of the ith row vector of V (under the assumption that U has a fixed value) is 
completely determined by (p(u"'), we have p(U', V) = p(U, V). This proves (8.5.2). 

Next we show (8.5.3). Let A = U - V, v = v(A). By definition of v(A) there is a 
column vector t = (tl,..., tn)T with t, = 1, 1 < v S n, such that 

A t = Omod2 * Zn. 

(Note that det A is a multiple of h-N and hence even, if N is composite.) Then 
Tp(A * t/2) is well defined and we have 9p(A - t/2) E B, since A(A) c kerT. We 
may assume Tp(A - t/2) E B'. (Otherwise, we have (p([A(A)/2] fn ZM) 4 B' and 
hence (U, V) O Q, so that there is nothing to show.) 

Let A' = U' - V. Since t = 1 and A differs from A' only in the vth row, we 
have 

ep(A' t/2) = Tp(A * t/2) + qT[(u' - u,)/2J. 

By definition of u' we have u' -u = 2v mod 2 - kerq and hence 

p(A' * t/2) = p(A - t/2) + p(v) E B' +f. 
Since f i B', this imphes p(A' - t/2) i B' and hence (U', V) = ((U, V) 0 Q. 
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